
Enhancing Applications Performance on Intel Paragon
through Dynamic Memory Allocation

Subhash Saini and Horst D. SimonI
Report RNR-93-017, November 1993

NAS Systems Division
Applied Research Branch

NASA Ames Research Center, Mail Stop T045-1
Moffett Field, CA 94035

(to appear in the Proceedings of the Scalable Parallel Libraries

Conference
Missisisippi State Univ., Oct. 6 -8, 1993.)

Abstract. The Paragon operating system (OS) is based upon OSF /1
AD, the first standard compliant, distributed operating system for massively
parallel processing system. The OSF addresses several major problems and
supports virtual memory (VM). The OS manages the VM by performing two
services, among others. Firstly, paging-in service is performed by paging-in
the executable code from service node to the compute node. This includes
the paging-in of empty data corresponding to static allocation of arrays not at
the DIMENSION statement but at the first reference and use of the arrays.
Secondly, paging-out service is performed by paging-out the unused part of
the OSF server to boot node to make space available for the user's executable
code. These paging-in and paging-out activities take place simultaneously and
drastically degrade the performance of the user code. We have investigated this
problem systematically and in detail, and found that the dynamic allocation
of memory completely eliminates the unnecessary and undesirable service of
paging-in of the empty data arrays from the service node to the compute node
and thereby increases, in some cases, the performance of applications by 30%
to 40%.

1 Both authors are employees of Computer Sciences Corporation. This work

was supported through NASA Contract NAS 2-12961.

1

Enhancing Applications Performance on Intel Paragon
through Dynamic Memory Allocation *

Subhash Saini and Horst Simon
NAS-NASA Ames Research Center, Mail Stop 258-6, Moffett Field, CA 94035-1000

Abstract server, system buffers and the amount of memory avail-
able for the user's application. Methodology for the inves-
tigations is given in Sec. 5. Based upon our numerical
experiments, the formulated hypothesis is given in Sec. 7.
The remedies for eliminating the paging-in of empty data
arrays and thereby enhancing the performance of the
applications are given in Sec. 8. Section 9 deals with the
variation in performance when the application starts pag-
ing against itself. Our conclusions are drawn in Sec. 10.

The Paragon operating system (OS) supports virtual
memory (VM). The OS manages virtual memory by per-
fonning two services. Firstly, paging-in service pages the
executable code from the service node to the compute
nodes. This includes the paging-in of empty data corre-
sponding to statically allocated arrays. Secondly, paging-
out service is peifonned by paging the unused part of the
OSF server to the boot node to make space available for
the user:SO executable code. These paging-in and paging-
out activities take place simultaneously and drastically
degrade the peifonnance of the user code. We have inves-
tigated this problem in detail, and found that the dynamic
allocation of memory completely eliminates the unneces-
sary and undesirable effects of paging-in empty data
arrays from the service node to the compute nodes and
thereby increases the peifonnance of the applications con-
sidered in the present work by 30% to 40%.

2: Paragon Overview

2.1: The i860 XP microprocessor

The Paragon system is based on the 64 bit ;860 XpTM

microprocessor [3] by Intel. The ;860 xpTM microproces-
sor has 2.5 million transistors in a single chip and runs at
50 MHz. The theoretical speed is 100 MFLOPS in 32 bit
floating point and 75 MFLOPS for 64 bit floating opera-
tions. The ;860 XpTM features 32 integer address registers
with 32 bits each. It has 32 floating point registers with 32
bits each. The floating point registers can also be accessed
as 16 floating point registers with 64 bits each or 8 floating
point registers with 128 bits each. Each floating point reg-
ister has two read ports, a write port and two-bidirectional
ports. All these ports are 64 bits wide and can be used
simultaneously. The floating point registers serve as input
to the floating point adder and multiplier. In vector compu-
tations, these registers are used as buffers while the data
cache serves as vector registers. The ;860 XpTM micropro-
cessor has 16 KB of instruction and 16 KB of data caches.
The data cache has a 32 bit path to the integer unit and 128
bit data path to the floating point unit. The ;860 xpTM has
a number of advanced features to facilitate high execution
rates. The ;860 XpTM microprocessor's floating point unit
integrates single-cycle operation, 64 bit and 128 bit data
paths on chip and a 128 bit data path to main memory for
fast access to data and transfer of results. floating point
add, multiply and fetch from main memory are pipelined
operations, and they take advantage of a three-stage pipe-
line to produce one result every clock for 32 bit add or
multiply operations and 64 bit adds. The 64 bit multiplica-
tion takes two clocks.

1: Introduction

The Numerical Aerodynmical Simulation (NAS) Sys-
tems Division received an Intel Touchstone Sigma proto-
type model Paragon XP/S-15 in February 1993. It was
found that performance of many applications including the
assembly coded single node BIAS 3 routine DGEMM [I]
was lower than the performance on Intel iPSC/860. This
finding was quite puzzling since the clock of the micropro-
cessor i860 XP used in the Paragon is 25% faster than the
microprocessor i860 XR used in the Intel iPSCl860 [2,3].
It was also found that the performance of the NAS Parallel
Benchmarks (NPB) [4,5] is enhanced by about 30% if they
are run for second time in a DO loop. Furthermore, the per-
formance of DGEMM was identical for the first run and the
second run on a service node, but on a compute node the
performance of the second run was about 40% better than
the first run. These anomalies in the performance on the
Paragon led us to investigate the problem in more detail.
This in turn led us to propose a method of dynamic alloca-
tion of memory that increases the performance of the
applications by about 30% to 40%.

In Sec. 2 we give a brief overview of the Paragon sys-
tem. Sec. 3 gives the description of the BIAS 3 kernel and
NPB used in the investigations. Section 4 discusses the
allocation of memory per node for the microkemel, OSF

2

2.2: NAS Intel Paragon XP/S-15 at this time, for a total of 227 nodes. When a user logs onto
the Paragon, the shell runs on one of the four service
nodes. In the current release of the Paragon OS, processes
do not move between service nodes to provide load bal-
ancing. However, the load leveler decides on which node a
process should be started. In principle, partitions and sub-
partitons may overlap. For instance, there could be a sub-
partition called .compute.part1 consisting of nodes 0-31 of
.compute, and another subpartition called .compute.part2
consisting of nodes 15-63 of .compute. However, in the
current release of the operating system on the NAS Para-
gon , there are two problems which restrict the use of sub-
partitions. First, running more than one application on a
node (either two jobs in the same partition or jobs in over-
lapping partitions) may cause the system to crash. Second,
the existence of overlapping partitions sometimes causes
jobs to wait when they need not. For these two reasons,
there are currently no subpartitions of the .compute parti-
tion. All jobs run directly on the .compute partition.

2.3: Paragon Operating System

The UNLX operating system was originally designed for
sequential computers and is not very well suited to the per-
formance of massively parallel applications. The Paragon
operating system is based upon two operating systems: the
Mach system from Carnegie Mellon University and the
Open Software Foundation~ OSF/1 AD distributed system
for multicomputers [7]. The Paragon's operating system
provides all the UNLX features including virtual memory;
shell, commands and utilities; 110 services; and network-
ing support forftp,1pc and NFS. Each Paragon node has a
small microkemel irrespective of the role of the node in
the system. The Paragon operating system provides pro-
gramming flexibility through virtual memory. In theory,
virtual memory simplifies application development and
porting by enabling code requiring large memory to run on
a single compute node before being distributed across
multiple nodes. The application runs in virtual memory
which means that each process can access more memory
than is physically available on each node.

3: Applications used

3.1: Basic Linear Algebra Subprograms

A single node of the Paragon XPIS-15 [6] consists of
two i860 xpTM microprocessors: one for computation and
the other for communication. The compute processor is for
computation and the communication processor handles all
message-protocol processing thus freeing the computation
processor to do computations. Currently, the communica-
tion processor is not used in the NAS Paragon. Each com-
pute processor has 16 MB of local memory but at NAS
only about 6 MB is available for applications, the rest
being used for the micro kernel, OSF server and system
buffers.

The NAS Paragon has 256 slots for nodes. Slots are
given physical node numbers from 0 through 255. Slots
are physically arranged in a rectangular grid of size 16 by
16. There are 8 service nodes; four of them have 16 MB of
memory each and the other four have 32 MB of memory
each. Column 0 and column 14 have no physical nodes.
The service partition contains 8 nodes in the last column.
One of these service nodes is a boot node. This boot node
has 32 MB of memory and is connected to a Redundant
Array of Independent Disks-1 (RAID-1). The compute par-
tition has 208 nodes which occupy columns 1 through 13.
Compute processors are given logical numbers 0 through
207. Compute processors are arranged in a 16 by 13 rect-
angular grid .The 227 nodes are arranged in a two-dimen-
sional mesh using wormhole routing network technology.
The four service nodes comprise the service partition and
provide an interface to the outside world, serving as afront
end to the Paragon system. Besides running jobs on the
compute nodes, the service nodes run interactive jobs,
such as shells and editors. They appear as one computer
running UNlX.

Theoretical peak performance for 64 bit floating point
arithmetic is 15.6 GFLOPS for the 208 compute nodes.
Hardware node-to-node bandwidth is 200 MB per second
in full duplex.

The nodes of the NAS Paragon are organized into
groups called partitions [6]. Partitions are organized in a
hierarchical structure similar to that of the UNlX file sys-
tem. Each partition has a pathname in which successive
levels of the tree are separated by a periods ("."), analo-
gous to 'or' in the UNlX file system. A subpartition con-
tains a subset of the nodes of the parent partition.

Currently, on the NAS Paragon there are no subparti-
tions of .compute or .service. The root partition (denoted
by".") contains all 227 nodes of the Paragon. There are
two subpartitions of the root partition: the compute parti-
tion, named .compute, contains 208 nodes to run parallel
applications. The service partition, named .service, con-
tains four nodes devoted to interactive jobs. The remaining
eight nodes are not part of a subpartition and serve as disk
controllers and are connected to the RAID for 1/0. The
four nodes of the service partition appear as one computer.
In summary, the NAS Paragon system has 208 compute
nodes, 3 HiPPI nodes, 1 boot node, 8 disk nodes, 4 service
nodes of which 1 is a boot node and 4 nodes are not used

BIAS I, 2 and 3 are the basic building blocks for many
of scientific and engineering applications [1]. For exam-
ple, the dot product is a basic kernel in lntels ProSolver
Skyline Equation Solver (ProSolver-SES) [8], a direct
solver using skyline storage, useful for perfonning Finite
Element Structural analysis in designing aerospace struc-
tures. BIAS 3 (matrix-matrix) kernels are basic kernels in
Intel's ProSolver Dense Equation Solver (ProSolver-DES)
[9], a direct solver that may be applied in solving compu-
tational electromagnetics (CEM) problems using Method
of Moments (MOM). BIAS 2 and BIAS 3 are basic kernels
in IAPACK [I]. In the present paper, we have used a BIAS

3

3 routine called DGEMM to compute C = A *B, where A and
B are real general matrices. The DGEMM is a single node
assembly coded routine and as such involves no interpro-
cessor communication.

ning a debugging version of the microkernel. The micro-
kernel is the only system software component that is in the
memory of each compute node at all times including its
internal tables and buffers. The OSF server is in the mem-
ory of each compute node initially, but as pages are needed
by the application unused parts of server is paged-out to
the boot node. Across the whole machine the Paragon OS
takes 2 GB of memory out of total of 3.3 GB of memory,
thus leaving only 1.25 GB for the user's application.

3.2: NAS Parallel Benchmarks

The NPB [4,5] were developed to evaluate the perfor-
mance of highly parallel supercomputers. One of the main
features of these benchmarks is their pencil and paper
specification, which means that all details are specified
algorithmically thereby avoiding many of the difficulties
associated with traditional approaches to evaluating highly
parallel supercomputers. The NPB consist of a set of eight
problems each focusing on some important aspect of
highly parallel supercomputing for computational aero-
sciences. The eight problems include five kernels and
three simulated computational fluid dynamics (CFD)
applications. The implementation of the kernels is rela-
tively simple and straightforward and gives some insight
into the general level of perfonnance that can be expected
for a given highly parallel machine. The other three simu-
lated CFD applications need more effort to implement on
highly parallel computers and are representative of the
types of actual data movement and computation needed
for computational aerosciences. In the present paper, we
have used the block tridiagonal (BT) benchmark, which
was ported from the Intel iPSC/860 [10] to the Paragon.
The NPB all involve significant interprocessor communi-
cation with the exception of the Embarrassingly Parallel
(EP) benchmark which involves almost no interprocessor
communication.

5: Methodology

4: Distribution of memory on Paragon

The exact amount of memory available for the user's
code is very hard to estimate as it depends upon several
factors such as the history of the Paragon system since the
last reboot, number of nodes, size of the system buffers set
by the user at run time etc. The approximate breakdown of
memory per node for the NAS Paragon is shown in Table
I. Memory taken by the microkemel per node on the NAS

Table 1: Distribution of Memory on each NAS compute

processor

5.1: Operating System and Compiler

The Paragon OS used is version R1.1. and the Fortran
compiler is 4.1 [11]. The compiler options used are the
f77 -04 -Mvect -Knoieee abc.f -lkmath
[12] and the compilation was done on the service node.
There is a compiler option by which one may set the size
of the portion of the cache used by the vectorizer to num-
ber bytes. This number must be a multiple of 16, and less
than the cache size 16384 of the microprocessor i860 XP.
In most cases the best results occur when number is set to
4096, which is the default. In view of this we decided to
choose the default size 4 KB and the highest optimization
level of 4 was used. This level of optimization generates a
basic block for each Fortran statement and scheduling
within the basic block is performed. It does perform
aggressive register allocation for software pipelined loops.
In addition, code for pipelined loops is scheduled several
ways, with the best way selected for the assembly file. The
option -Kno i eee was used, which produces a program
that flushes denormals to 0 on creation (which reduces
underflow traps) and links in a math library that is not as
accurate as the standard library, but offers greater perfor-
mance. This library offers little or no support for excep-
tional data types such as INF and NaN, and will not trap on
such values when encountered. If used while compiling, it
tells the compiler to perform real and double precision
divides using an inline divide algorithm that offers greater
performance than the standard algorithm. This algorithm
produces results that differ from the results specified by
the IEEE standard by no more than three units in the last
place (ulp).

5.2: Procedure for 1st Run and 2nd Run

It was found that the performance of NPB codes is

enhanced by about 30% if they are run for second time in a
DO loop. Furthermore, the performance of DGEMM was
identical for the first run and second run on a service node
but on a compute node the performance of the second run
was about 40% better than the first run. In our numerical
results section we will present results for a first run and a
second run of an application. The procedure to obtain first
run and second run for a given application is illustrated in
Table 2. In this table, a DO loop index i running from 1 to
2 is inserted just before the section of the code we want toParagon is bigger than claimed by Intel as the NAS is run-

4

I

time for benchmark purposes. In this table the first run
corresponds to i=l and the second run corresponds to i=2
as shown in Table 2. The overhead in calling the function
DCLOCK was estimated to be about 1.5x1o-6second.

6: Results

Fig l(a) shows the results for the assembly coded BIAS
3 routine DGEMM on a service node obtained for the first
run and the second run. Notice that on the service node the
results for first run and second run are identical. The rou-
tine DGEz..n-1 is a single node routine and as such involves
no interprocessor communication.

Table 2: Procedure for obtaining first run and second
run

F;gu.. 1(a): DGEMM on eerv;ca nod.. FlgU" 1(b): DGEMM on =mput. node.

48'

40

35

30

28

201

15

10

;1
i

i),

3Si

301

;25

20

15

10

PROGRAM abc

DO i = 1, 2
to = DCLOCK()
t1 = DCLOCK
CALL DGEl.n.1(,..., ...
t2 = DCLOCK()
time = t2 -(t1 -to)
ENDDO

END

5.3: Compiling and linking on the partitions
'8' Run 2nd Run '" Run 2nd Run

The Paragon system has two types of partitions: (a) a
service partition and (b) a compute partition. The partition
where an application runs can be specified when you com-
pile and execute it The -nx switch defines the preproces-
sor symbol _NODE and links with the nx library libnx.a
[II]. It also links with the start-up routine-the controlling
process that runs in the service partition and starts up the
application in the compute partition. Commands to run the
application on service partition and compute partition are
given in Table 3.

Fig 1 (b) shows the results for the assembly coded BIAS
3 on a compute node for the first run and second run. The
performance of the DGEMM is 27 MFLOPS for the first run
and 45 MFLOPS for the second run. The performance
obtained by the second run is about 40% better than the
performance by the first run.

Figure 2 shows the performance of the B7: The BT code
used is an Intel iPSC/860 version which was ported to the
NAS Paragon. Timings reported for the BT in Figure 2 are
according to the NPB rules. The first run takes 629 sec-
onds whereas the second runs takes 490 seconds. The per-
formance of the second run is about 30% better than the
first run.

Table 3: Compiling and executing on Mesh

Service Partition Compute Partition

> f77 prog.f
> a.out

> f77 prog.f -nx
> a.out -sz 1
> a.out -sz 64

5.4: Numerical experiments

I

It is clear from the Figures 1-2 that the perfonnance of
the second run is about 30% to 40% higher than the first
run. This degradation in the performance for the first run is
not acceptable since users will always run their code once.

Figure 3 shows the perfonnance of DGEMM on two
compute nodes, i.e. on node 0 and node 1. The function
gsync was used to synchronize all node processes. The
function gsync [6] performs a global synchronization
operation. When a node process calls the gsync () func-

~

The following two numerical experiments were per-
formed:
(a) First experiment: Experiment in which no interpro-
cessor communication is involved and only communica-
tion is due to the paging-in of executable code from the
service node to the compute node and if memory require-
ment exceeds 6 MB per node, then paging-out of the
unused part of the OSF server from the compute nodes to
the boot node. The single node BIAS 3 routine DGEMM
was used.
(b) Second experiment: Experiment in which interpro-
cessor communication is involved in addition to the com-
munication due to paging-in and paging-out. The BT
application from the NPB was used.

5.

tion, it waits until all other nodes in the application call
gsync () before continuing. All nodes in the application
must call gsync before any node in the application can
continue. The MFLOPS rate shown in Figures 3-8 are for
the first run. The perfonnance has decreased from 27
MFWPS to 22 MFLOPS.

Figure 6 shows the perfonnance of DGEMM on sixteen
nodes. Here the average perfonnance has been funher
decreased to about 6 MFLOPS. The perfonnance on at
least one node (node 0) is 21 MFLOPS, much better than
the rest of the nodes.

r~18 8: DGEMM on sixteen compute nodes.

Figure 4 shows the perfonnance of DGEMM on four
compute nodes. The perfonnance has further degraded to
an average of about 13 MFLOPS except for node 1 on
which it is about 18 MFWPS. The reason for relatively
better perfonnance on node 1 than on nodes 0, 2 and 3 is
that node 1 happens to be the first node to receive the
empty data arrays from the service node.

0 1 Node Num&r 3

Figure 5 shows the performance of DGEMM on eight
compute nodes. The performance has degraded further to
an average of 7 MFWPS. The performance on node 0 is
relatively better than the rest of the nodes.

6

Figure 8 shows the perfonnance of DGEMM on 64 com-
pute nodes. Increasing the number of nodes from 32 to 64
has further degraded the perfonnance. Here the perfor-
mance on nodes 0, 26 and 33 is much better compared to
the rest of the nodes.

to tenninate the process of loading. From our experience
we found that the run time option -plk is not a solution
for codes which need more than 7 MB of memory per
node.

Figuf8 9: DGEMM on 64'-' with entire data a... -into memory.

j 1

'0 10 20 30 40
Node Number

50 SI

8.2: Dynamic Allocation of memory

7: Hypothesis The dynamic allocation of memory can be perfonned in
a number of ways. The best method is to use the ALLO-
CATE statement [13]. The ALLOCATE statement allocates
storage for each pointer-based variable and allocatable
common block which appears in the statement The
DEALLOCATE statement causes the memory allocated for
each pointer-based variable or allocatable COMMON block
that appears in the statement to be deallocated. Formnately
both ALLOCATE and DEALLOCATE are available [13]. A
dynamic or allocatable COMMON block is a common block
whose storage is not allocated until an explicit ALLOCATE
statement is executed. The syntax of statements ALLO-
CATE and DEALLOCATE is given in Table 4 and their use
in Appendix A.

It is clear from Figures 2-8 that as we increase the num-
ber of nodes, the performance decreases from 27 MFWPS
to 1.5 MFLOPS for the first run. The unused part of the
OSF server must be paged out to the boot node, whenever
the memory requirement is more than about 6 MB, to pro-
vide space for the arrays A, B and C in the program on the
compute node. While the paging-out of the unused part of
the OSF server is going on, pages containing arrays A, B
and C are being paged-in from the service node to each of
the compute nodes. These paging-in and paging-out activ-
ities take place simultaneously at the first reference and
use of the arrays A, B and C and not at the DIMENSION
statement in the program. The net result is that the simulta-
neous paging-in and paging-out creates additional traffic
in the network that increases with the increasing number
of compute nodes.

Table 4: Syntax for using ALLOCATE and
DEALLOCATE statements

ALLOCATE (name[,name] ...[,STAT: var])
8: Remedies for eliminating paging-in of

empty data arrays
DEALLOCATE (al, [,al ,STAT= var])

name is a pointer-based variable or the name of an
allocatable COMMON block enclosed in slashes8.1: Locking the memory at run time
al is a pointer-based variable or the name of an allocat-
able COMMON block enclosed in slashes.

var is an integer variable, integer array element, or
integer member of a structure.

,

The activity of paging-in can be removed by using the
run time option -plk [6] which causes all of the applica-
tion's pages to be brought at the start of execution and to
remain resident. The results of doing this are shown in
Figure 9. The performance on each compute node is 45
MFLOPS in the first run.

The run time option -plk was tried on codes of dif-
ferent sizes and we found that for a code that needs about
7 MB per compute node, the time for loading the code
from the service node on to the compute node became very
large. In many cases load time became so large that we had

We have found that the most effective and elegant
method of removing the undesirable and unnecessary pag-
ing-in of empty arrays provided by the Paragon OS is to
use dynamic allocation of memory inside the application.
The dynamic allocation of memory creates the arrays A. B

. 7

and C at run time on the compute processors rather than at
compile time on the service node. The static allocation of
memory creates the arrays A. Band C at compile time and
at run time they are paged-in to the compute processors as
and when they are first referenced and used. The perfor-
mance of DGEl-n-1 using dynamic allocation of memory is
shown in Figure 10. The dynamic memory allocation
removes a serializing bottleneck and communication over-
head.

fonnance goes down as the unused part of the OSF server
is being paged-out from the compute node to the boot
node to make space available for the application. As we
further increase the size of the matrix, a limit is reached at
about 10 MB beyond which none of the OSF server is left
to be paged-out and the application starts paging-out
against itself. The effect of paging an application against
itself is clearly seen at about 11 MB when the perfonnance
of the DGEMM goes down to about 1 MFLOPS.

Figure 10: DGEMM on 64 nodes using dynamic allocation of memory.

0 10 20 30 40 50 60
Node Number

The results for BT using dynamic allocation of memory
are shown in Figure 11. We find that dynamic allocation of
memory increases the performance of BT by 29% and
gives the correct performance in the first run.

10: Conclusions

(1) Paging-in of data (empty arrays) during execution
time degrades the perfonnance of the application and
should be avoided. This service perfonned by the Paragon
operating system is unnecessary and is undesirable.

(2) One can use the run-time option -plk to lock the
memory to resolve the problem. However, the use of the -
plk option enonnously increases the load time if the
memory required by the application is about 7 MB or
higher per node. A genuine remedy for unnecessary

..effects of paging is to use dynamic allocation of memory
using ALLOCATE and DEALLOCATE statements [13]. On
NAS Paragon or any other Paragon system, irrespective
of the memory requirement of the application, dynamic
allocation of memory should ALWAYS be used to elimi-
nate the service of paging-in of empty data arrays from the
service node to the compute processor. The use of
dynamic allocation of memory increases the perfonnance
of applications, considered in the present work, by 30% to
40%.

(3) The performance of the application starts decreas-
ing when the application starts paging-out and ultimately it
becomes unacceptable. On the NAS Paragon, after 10 MB,
the application starts paging against itself.

(4) The use of virtual memory by the OSF/1 AD oper-
ating system has been a major drawback to the perfor-
mance of the Paragon. The large amount of memory
required by OSF/1 AD reduces available user memory to
about 6 MB per compute processor. This is a step back-

9: Paging of application against itself

The perfonnance of DGEMM as a function of the size of
the matrix is shown in Figure 12. When the size of the
matrix is 512x512 it needs about 6.3 MB of memory per
node. As we increase the size of the matrix, initially per-

8

[13] PARAGONTM OSF/I. Fortran Language Reference
Manual. April 1993,lntel Corporation.

[14] Proceedings of Intel Superr:omputing Users Group
Meeting, Oct. 3-6, 1993, St Louis, Missouri

[IS] Paragon System Software Release 1.1. Release Notes for
the Paragon XP/S System, October 1993, Intel

Corporation.

[16] Thanh Phung, private communication. Nov. 1993.

APPENDIX A

Dynamic Allocation of Memory in Fortran

Figure 13 shows the Fortran program with static alloca-
tion of memory and Figure 14 shows a modified progam
with dynamic allocation of memory.

Figure 13: Fornan program with static allocation of
memory.

ward from the roughly 8 MB per node memory available to
the user on the Intel iPSC/860. Using the virtual memory
system can lead to a significant drop in performance, and
to other not very transparent performance variations,
which make the machine less predictable for the user.
These variations and the lack of memory could be toler-
ated as a price for increased system stability and ease of
use. However, the promise of using OSF/I AD for more
reliable production operation has not yet materialized.
This may change over time in favor of the Paragon.

(5) For any robust architecture and operating system,
the performance of the applications should not change
whether they are run with static allocation of memory or
dynamic allocation of memory. On the Paragon system,
the performance of the applications is considerably higher
(30% to 40% in the present paper) if dynamic allocation of
memory rather than static allocation of memory is used.

In summary, there are still major challenges ahead for
the Paragon compilers and systems software. Intel is
aware of the problem but so far it has not been docu-
mented anywhere, including the latest Release Notes I. I
[15, 16].

Acknowledgment: One of the authors (88) grate-
fully acknowledges many discussions with David McNab,
Bernard Traversat, William J. Nitzberg, Thanh Phung, Art
Lazanoff, and Todd F. Churchill.

* The authors are employees of Computer Sciences Cor-

poration. The work is supported through NASA contract
NAS2-12961.

References
Figure 14: Fortran program with dynamic allocation

of memory.[1] E. Anderson et aI., lAPACK Users' Guide, SlAM,
Philadelphia, 1992.

[2] Overview of the i86oTM XR Supercomputing
Microprocessor, 1990, Intel Corporation.

[3] Overview of the i86oTM XP Supercomputing
Microprocessor, 1991, Intel Corporation.

[4] D. Bailey et aI., cds, The NAS Parallel Benchmarks,
Technical Report RNR-91-02, NAS Ames Research
Center, Moffet Field, California, 1991.

[5] D. Bailey et aI., The NAS Parallel Benchmark Results,
IEEE Parallel & Distributed technology, 43-51, February
1993.

[6] PARAGONTM OSF/I. User:r Guide, Intel Corporation,
April 1993.

[7] OSFIITM Operating System User's Guide, Revision 1.0,
Prentice Hall Englewood, New Jersey, 1992.

[8] iPSC/860 ProSolve,IM.SES Mamlal, May, 1991, Intel
Corporation.

[9] iPSC/860 ProSolve,IM-DES Manual, March 1992, Intel
Corporation.

[10] Intel iPSC/860 User's Guide, April 1993
[11] PARAGONTM OSF/I Fortran Compiler User:r Guide.

Intel Corporation, April 1993.
[12] CLASSPACK. Basic Math Library User's Guide, Kuck &

Associates, Release 1.3, 1992.

Q

